Hier können Sie

Hier auf der ..1nte-Seite erfolgt nochmals eine leider notwendig gewordene Nach-Kalibrierung der MultiEntitätenLeiter.
.
Das heißt, es erfolgt eine nochmalige Präzisierung
jener energetischen Zusammenhänge welche ursprünglich schon dort auf der "http://www.Entropie-Umkehr.de/11te-Seite" begonnen worden sind und hier
auf der
..1hte-Seite
sowie
auf der
..1ite-Seite sowie

auf der
..1jte-Seite sowie

auf der
..1kte-Seite sowie

auf der
..1lte-Seite sowie

auf der
..1mte-Seite
und nun nochmals fortgesetzt
auf der
..1nte-Seite vielleicht abgeschlossen werden. 

Bekanntlich kann (meines Erachtens) das zykliche Schicksal des Universums mittels des Schemas des 'ewigen 'MayaKalenders' in dem Verlauf der Hubble-ParameterKurve visualisiert werden. {Der ewige Maya-Kalender ist auf der hiesig 6te-Seite zu finden und, dieses hat in der Planck-Welt keinen [°K]-'NULL'Punkt, sondern legiglich Pseudo'NULL'Durchgänge}.
Dabei muss die kosmologische Rotverschiebung, --(nach der Inflation, während der Hubble'schen Expansion)--, im direkt-physikalischen Zusammenhang mit der Tempe-raturEntwicklung des Universums stehen. {Vergl. Bild-in-Bild-Grafik von GüntherHasinger bei SCAD0066 auf hiesig 23te-Seite}.
.
Hiernachstehend erfolgt nun die auf der vorigen ..1mte-Seite angekündigte Forsetzung der NachKalibierung. Zuerst bringe ich die (nachkalibrierend)-zu-korrigierende MultiEntitäten-Leiter von der vorigen ..1mte-Seite.
.
§§§§§§§§§§§§§§§§§§§ (hier Anfang vom restaurierten Text) §§§§§§§§§§§§§§§§§§
Es sind also  demnach "3[Dekaden]" der Wellenlänge "λ[m]" bzw. 2mal "3[Dekaden]= 6[Dekaden] ž-Werte" einzubeziehen, so_dass relativ zu den "^±60[Dekaden]" einerseits, mit "^±60/2=^±^31[Dekaden]" andererseits für die "StrahlungsTemperarturWerte Θ[°K]" spekuliert werden kann.
Es gilt wieder: *)Dez
Jan.2019 dochKalibrierung mit "ž=10^±60" ist bereits auf EU2ate beachtet! *)9.FebrJan.2019neuerdingsKalibrierung nur"ž=10^±31[Dekaden] ist bereits auf EU25bteZusatzSeite festgelegt!

Und, weil die "WellenlängenWerte λ[m]" reziprokproportional zu den "FrequenzWerten ν[1/s]" sind sowie deren InterferenzVerhalten (kosmologische Rotverschiebung) wurzelproportional zu den  ž-Werten sein muss, wird es doch wieder "2mal 31[Dekaden]=62[Dekaden] ž-Werte" geben müssen.
(Dieses muss ja aufgehen, weil die Spanne der StrahlungsTemperaturWert bis zum Urknall "10^31[°K]" eingehalten werden muss.
Denn laut MultiEntitätenLeiter sind die "StrahlungsTemperaturWerte
[°K]" wurzelreziprokproportional zu den ž-Werten).
Dann darf ich bezüglich der "StrahlungsTemperaturWerte[°K]" nur mit ½-sovielen [°K]Dekaden rechnen, wie für die ^±60-fachen ž-Werte:
Für den Urknall mit "10^31[°K]" passt also die WellenlängenSpanne "[m]" bzw. die doppelte 
ž-Werte-Spanne "10^±60-fach".
Und: Es müsste (in dem kleinen speziellen MultiEntitätenLeiterAbschnittt bei "1[°K] bis zirka 5000[°K]"LICHT) eine kleine "2mal 3[Dekaden]"
ž-WerteSpanne gen zu der kleinen "1mal 3[Dekade]" TemperaurSpanne.
In den 4 MultiEntitätenLeiter-Kolonnen
des RechnerOnlineProgramms muss es also 1mal Frequenz "ν[Hz]" plus 1mal Wellenlänge "λ[m]" plus 2mal StrahlungsTemperatur "Θ[°K]" mit der Spanne ^±31-fach geben.
Dazu kommen 2MultiEntitätenLeiter-Kolonnen, die nicht vom RechnerOnlineProgramm beherrscht werden.

Es gilt wieder: *)DezJan.2019 dochKalibrierung mit "ž=10^±60" ist bereits auf EU2ate beachtet! *)9.FebrJan.2019neuerdingsKalibrierung nur"ž=10^±31[Dekaden] ist bereits auf EU25bteZusatzSeite festgelegt!
§§§§§§§§§§§§§§§§§§§ (hier Ende vom restaurierten Text) §§§§§§§$§§§§§§§§§§
.

.

Nachstehend gilt beim {HubbleDiagramm}-Konzept für den 'oberen' Anfang).
Bei  30SHz10^42[Hz] passt zirka die PlanckKreisfrequenz "1,855.10^43[s^–1]" dazu.
Bei "10sm10.10^–36[m]1.10^–35[m]" passt dito die PlanckLänge "1035[m]" dazu.
Zur
PlanckKreisfrequenz gehört offenbar die PlanckTemperatur "1,417.10^32[°K]".
Der vorherig kleinste
ž-Wert "ž=0,616.10^–60" würde zirka der kleinsten Wellenlänge und der höchsten Frequenz "30SHz/10sm" entsprechen.
.

Für1LHz/300lmgilt"ž=10^62,972"//"ž=1,066.10^–63"gilt"θ=10^33,9849[°K]"//"9,6592.10^33[°K]";
Für 300SHz/1smgilt "ž=10^–61,972"//"ž=1,066.10^–62"gilt"θ=10^33,4625[°K]"//"2,91.10^33[°K]";
Für 100SHz/3smgilt"ž=10^–60,972"//"ž=1,066.10^–61"gilt"θ=10^32,9852[°K]"//"966,6.10^30[°K]";
Für 30SHz/10smgilt"ž=10^–60,021"//"ž=0,616.10^–60"gilt"θ=10^32,4624[°K]"//"291.10^30[°K]";
Für
10SHz/30smgilt"ž=10^59,972"//"ž=1,066.10^–60"gilt"θ=10^31,9849[°K]"//"96,592.10^30[°K]";
Für 3SHz/100smgilt"ž=10^58,972"//"ž=1,066.10^–59"gilt"θ=10^31,4625[°K]"//"29,1.10^30[°K]";
Für1SHz/300smgilt"ž=10^–57,972"//"ž=1,066.10^–58"gilt"θ=10^30,9849[°K]"//"9,6592.10^30[°K]";
Für 300RHz/1rmgilt "ž=10^–56,972"//"ž=1,066.10^–57"gilt"θ=10^30,4625[°K]"//"2,91.10^30[°K]";
Für 100RHz/3rmgilt"ž=10^–55,972"//"ž=1,066.10^–56"gilt"θ=10^29,9852[°K]"//"966,6.10^27[°K]";
Für 30RHz/10rmgilt"ž=10^54,972"//"ž=1,066.10^–55"gilt"θ=10^29,4624[°K]"//"291.10^27[°K]";Für10RHz/30rmgilt"ž=10^53,972"//"ž=1,066.10^–54"gilt"θ=10^28,9849[°K]"//"96,592.10^27[°K]";
Für 3RHz/100rmgilt "ž=10^52,972"//"ž=1,066.10^–53"gilt"θ=10^28,4625[°K]"//"29,1.10^27[°K]";

Für1RHz/300rmgilt"ž=10^51,972"//"ž=1,066.10^–52"gilt"θ=10^27,9849[°K]"//"9,6592.10^27[°K]";
Für 300QHz/1qmgilt "ž=10^50,972"//"ž=1,066.10^–51"gilt"θ=10^27,4625[°K]"//"2,91.10^27[°K]";
Für 100QHz/3qmgilt"ž=10^49,972"//"ž=1,066.10^–50"gilt"θ=10^26,9852[°K]"//"966,6.10^24[°K]";
Für 30QHz/10qmgilt"ž=10^–48,972"//"ž=1,066.10^–49"gilt"θ=10^26,4624[°K]"//"291.10^24[°K]";Für10QHz/30qmgilt"ž=10^47,972"//"ž=1,066.10^–48"gilt"θ=10^25,9849[°K]"//"96,592.10^24[°K]";
Für 3QHz/100qmgilt "ž=10^–46,972"//"ž=1,066.10^–47"gilt"θ=10^25,4625[°K]"//"29,1.10^24[°K]";
Für1QHz/300qmgilt"ž=10^45,972"//"ž=1,066.10^–46"gilt"θ=10^24,9849[°K]"//"9,6592.10^24[°K]";
Für 300WHz/1wmgilt "ž=10^–44,972"//"ž=1,066.10^–45"gilt"θ=10^24,4625[°K]"//"2,91.10^24[°K]";
Für 100WHz/3wmgilt"ž=10^43,972"//"ž=1,066.10^–44"gilt"θ=10^23,9852[°K]"//"966,6.10^21[°K]";
Für 30WHz/10wmgilt"ž=10^–42,972"//"ž=1,066.10^–43"gilt"θ=10^23,4624[°K]"//"291.10^21[°K]";Für10WHz/30wmgilt"ž=10^–41,972"//"ž=1,066.10^–42"gilt"θ=10^22,9849[°K]"//"96,592.10^21[°K]";
Für 3WHz/100wmgilt "ž=10^–40,972"//"ž=1,066.10^–41"gilt"θ=10^22,4625[°K]"//"29,1.10^21[°K]";
Für1WHz/300wmgilt"ž=10^39,972"//"ž=1,066.10^–40"gilt"θ=10^21,9849[°K]"//"9,6592.10^21[°K]";
Für 300VHz/1ymgilt "ž=10^38,972"//"ž=1,066.10^–39"gilt"θ=10^21,4625[°K]"//"2,91.10^21[°K]";
Für 100VHz/3ymgilt"ž=10^37,972"//"ž=1,066.10^–38"gilt"θ=10^20,9852[°K]"//"966,6.10^18[°K]";
Für 30VHz/10ymgilt"ž=10^–36,972"//"ž=1,066.10^–37"gilt"θ=10^20,4624[°K]"//"291.10^18[°K]";Für10VHz/30ymgilt"ž=10^35,972"//"ž=1,066.10^–36"gilt"θ=10^19,9849[°K]"//"96,592.10^18[°K]";
Für 3VHz/100ymgilt "ž=10^–34,972"//"ž=1,066.10^–35"gilt"θ=10^19,4625[°K]"//"29,1.10^18[°K]";
Für1VHz/300ymgilt"ž=10^33,972"//"ž=1,066.10^–34"gilt"θ=10^18,9849[°K]"//"9,6592.10^18[°K]";
Für 300UHz/1zmgilt "ž=10^32,972"//"ž=1,066.10^–33"gilt"θ=10^18,4625[°K]"//"2,91.10^18[°K]";
Für 100UHz/3zmgilt"ž=10^31,972"//"ž=1,066.10^–32"gilt"θ=10^17,9852[°K]"//"966,6.10^15[°K]";
Für 30UHz/10amgilt"ž=10^–30,972"//"ž=1,066.10^–31"gilt"θ=10^17,4624[°K]"//"291,0.10^15[°K]";Für10UHz/30zmgilt"ž=10^–29.972"//"ž=1,066.10^–30"gilt"θ=10^16,9849[°K]"//"96,592.10^15[°K]";
Für 3UHz/100zmgilt "ž=10^–28,972"//"ž=1,066.10^–29"gilt"θ=10^16,4625[°K]"//"29,007.10^15[°K]";

Für 1UHz/300zmgilt"ž=10^–27,972"//"ž=1,066.10^–28"gilt"θ=10^15,9852[°K]"//"9,666.10^15[°K]";
Für 300YHz/1amgilt"ž=10^–26,972"//"ž=1,066.10^–27"gilt"θ=10^15,4624[°K]"//"2,910.10^15[°K]";
Für100YHz/3amgilt"ž=10^25,972"//"ž=1,066.10^–26"gilt"θ=10^14,9849[°K]"//"965,92.10^12[°K]";
Für 30YHz/10amgilt "ž=10^–24,972"//"ž=1,066.10^–25"gilt"θ=10^14,4625[°K]"//"290,07.10^12[°K]";
Für 10YHz/30amgilt"ž=10^–23,972"//"ž=1,066.10^–24"gilt"θ=10^13,9852[°K]"//"96,66.10^12[°K]";
Für 3YHz/100amgilt"ž=10^–22,972"//"ž=1,066.10^–23"gilt"θ=10^13,4624[°K]"//"29,10.10^12[°K]";

Für1YHz/300amgilt"ž=10^–21,972"//"ž=1,066.10^–22"gilt"θ=10^12,9849[°K]"//"9.6592.10^12[°K]";
Für 300ZHz/1fmgilt "ž=10^20,972"//"ž=1,066.10^–21"gilt"θ=10^12,4625[°K]"//"2,9007.10^12[°K]";
Für 100ZHz/3fmgilt"ž=10^19,972"//"ž=1,066.10^–20"gilt"θ=10^11,9852[°K]"//"966,6.10^9[°K]";
Für 30ZHz/10fmgilt"ž=10^18,972"//"ž=1,066.10^–19"gilt"θ=10^11,4624[°K]"//"291,0.10^9[°K]";

Für10ZHz/30fmgilt"ž=10^17,972"//"ž=1,066.10^–18"gilt"θ=10^10,9849[°K]"//"96,592.10^9[°K]";
Für 3ZHz/100fmgilt "ž=10^16,972"//"ž=1,066.10^–17"gilt"θ=10^10,4625[°K]"//"29,007.10^9[°K]";
Für 1ZHz/300fmgilt"ž=10^15,972"//"ž=1,066.10^–16"gilt"θ=10^9,9852[°K]"//"9,666.10^9[°K]";
Für 300EHz/1pmgilt"ž=10^14,972"//"ž=1,066.10^–15"gilt"θ=10^9,4624[°K]"//"2,910^9[°K]";

Für100EHz/3pmgilt"ž=10^13,972"//"ž=1,066.10^–14"gilt"θ=10^8,9849[°K]"//"965,92.10^6[°K]";
Für 30EHz/10pmgilt "ž=10^12,972"//"ž=1,066.10^–13"gilt"θ=10^8,4625[°K]"//"290,07.10^6[°K]";
Für 10EHz/30pmgilt"ž=10^11,972"//"ž=1,066.10^–12"gilt"θ=10^7,9852[°K]"//"96,66.10^6[°K]";
Für 3EHz/100pmgilt"ž=10^10,972"//"ž=1,066.10^–11"gilt"θ=10^7,4624[°K]"//"29,10^6[°K]";

Für 1EHz/300pmgilt"ž=10^9,972"//"ž=1.066.10^–10"gilt"θ=10^6,9854[°K]"/"9,67.10^6[°K]";
Für 300PHz/1nmgilt"ž=10^–8,972"//"ž=1,066.10^–9"gilt"θ=10^6,4624[°K]"//"2,9.10^6[°K]";
Für 100PHz/3nmgilt"ž=10^–7,972"//"ž=1,066.10^–8"gilt"θ=10^5,9849[°K]"//"965,92.10^3[°K]";
Für 30PHz/10nmgilt "ž=10^–6,972"//"ž=1,066.10^–7"gilt"θ=10^5,4625[°K]"//"290,07.10^3[°K]";
Für 10PHz/30nmgilt"ž=10^–5,972"//"ž=1,066.10^–6"gilt"θ=10^+4,9852[°K]"//"96,66.10^3[°K]";
Für 3PHz/100nmgilt"ž=10^4,972"//"ž=1,066.10^–5"gilt"θ=10^+4,415[°K]"//"29.10^3[°K]";
Für 1PHz/300nmgilt"ž=10^3,972"//"ž=1,066.10^–4"gilt"θ=10^+3.9852[°K]"gehört, "9665,99[°K]";
Für 567,44THz/528,6nm  "ž=10^–3,111"//"ž=7,751.10^–4"gilt"θ=10^3.739[°K]"//"5481,97[°K]";L
icht
Für 300THz/1μmgilt"ž=10^2,972"//"ž=1,066.10^–3"gilt"θ=10^3,46[°K]"//"2899,72[°K]";
Für 100THz/3μmgilt"ž=10^1,972"//"ž=1,066.10^–2"gilt"θ=10^2,98[°K]"//"966[°K]";
Für 30THz/10μmgilt"ž=10^0,972"//"ž=1,066.10^1"gilt"θ=10^2,46[°K]"//"290[°K]";
Für 10THz/30μmgilt"ž=10^0,028"//"ž=1,066.10^±0"gilt"θ=10^1,99[°K]"//"96,66[°K]";Leben/Lit.[671]
Für 3THz/100μmgilt"ž=10^+1,028"//"ž=1,066.10^+1"gilt"θ=10^1,46°K]"//"29[°K]";
Für 1THz/300μmgilt "ž=10^+2,028"//"ž=1,066.10^+2"gilt"θ=10^0,985[°K]"//"9,67[°K]";
Für 300GHz/1mmgilt"ž=10^+3,028"//"ž=1,066.10^+3"gilt"θ=10^0,462[°K]"//"2,9[°K]";
Für 282,82GHz/1,06nmgilt"ž=10^+3,040"//"ž=1,089.10^+3"gilt"θ=10^0,436[°K]"//"2,73[°K]";CMB
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Für 103,4GHz/2,9mmgilt"ž=10^4,4354"//"ž=1,801.10^+3"gilt"θ=10^0,0000334[°K]"//"1,000077[°K]";
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Für 100GHz/3mmgilt"ž=10^4,028"//"ž=1.066.10^+4"gilt"θ=10^0, 01449[°K]"//"9,6720.10^1[°K]";
Für 30GHz/10mmgilt"ž=10^5,028"//"ž=1,066.10^+5"gilt"θ=10^–0,5374[°K]"//"2,9016.10^1[°K]";
Für 10GHz/30mmgilt"ž=10^6,028"//"ž=1.066.10^+6gilt"θ=10^1,0145[°K]"//"9,6720.10^2[°K]";
Für 3GHz/100mmgilt"ž=10^7,028"//"ž=1,066.10^+7"gilt"θ=10^1,5374[°K]"//"2,9016.10^2[°K]";
Für 1GHz/300mmgilt"ž=10^8,028"//"ž=1.066.10^+8"gilt"θ=10^2,0145[°K]"//"9,6720.10^3[°K]";
Für 300MHz/1mgilt"ž=10^9,028"//"ž=1,066.10^+9"gilt"θ=10^–2,5374[°K]"//"2,9016.10^–3[°K]";
Für100MHz/3mgilt"ž=10^10,028"//"ž=1.066.10^+10"gilt"θ=10^–3,0145[°K]"//"9.6720.10^–4[°K]";
Für 30MHz/10mgilt"ž=10^11,028"//"ž=1,066.10^+11"gilt"θ=10^–3,5374[°K]"//"2,9016.10^–4[°K]";
Für 10MHz/30mgilt"ž=10^12,028"//"ž=1.066.10^+12"gilt"θ=10^–4,0148[°K]"//"9,6720.10^–5[°K]";
Für 3MHz/100mgilt"ž=10^13,028"//"ž=1,066.10^+13"gilt"θ=10^–4,5376[°K]"//"2,9016.10^5[°K]";
Für 1MHz/300mgilt"ž=10^14,028"//"ž=1.066.10^+14"gilt"θ=10^–5,0148[°K]"//"9,6720.10^–6[°K]";
Für 300KHz/1kmgilt"ž=10^15,028"//"ž=1,066.10^+15"gilt"θ=10^–5,5391[°K]"//"2,9016.10^6[°K]";
Für100KHz/3kmgilt"ž=10^16,028"//"ž=1.066.10^+16"gilt"θ=10^–6,0151[°K]"//"9,6720.10^–7[°K]";
Für 30KHz/10kmgilt"ž=10^17,028"//"ž=1,066.10^+17"gilt"θ=10^–6,5375[°K]"//"2,9016.10^–7[°K]";
Für 10KHz/30kmgilt"ž=10^18,028"//"ž=1.066.10^+18"gilt"θ=10^–7,0148[°K]"//"9,6720.10^–8[°K]";
Für 3KHz/100kmgilt"ž=10^19,028"//"ž=1,066.10^+19"gilt"θ=10^–7,5376[°K]"//"2,9016.10^–8[°K]";
Für 1KHz/300kmgilt"ž=10^20,028"//"ž=1.066.10^+20"gilt"θ=10^–8,014[°K]"//"9,6720.10^–9[°K]";

Für 300 Hz/1Mmgilt"ž=10^21,028"//"ž=1,066.10^+21"gilt"θ=10^–8,5378[°K]"//"2,9016.10^9[°K]";Für100Hz/3Mmgilt"ž=10^22,028"//"ž=1.066.10^+22"gilt"θ=10^–9,0151[°K]"//"9,6720.10^10[°K]";
Für 30Hz/10Mmgilt"ž=10^23,028"//"ž=1,066.10^+23"gilt"θ=10^–9,5375[°K]"//"2,9016.10^–10[°K]";
Für 10Hz/30Mmgilt"ž=10^24,028"//"ž=1.066.10^+24"gilt"θ=10^–10,0148[°K]"//"9,6720.10^–11[°K]";
Für 3Hz/100Mmgilt"ž=10^25,028"//"ž=1,066.10^+25"gilt"θ=10^–10,5376[°K]"//"2,9016.10^11[°K]";
Für 1Hz/300Mmgilt"ž=10^26,028"//"ž=1.066.10^+26"gilt"θ=10^–11,014[°K]"//"9,6720.10^–12[°K]";

Für 300 mHz/1Gmgilt"ž=10^27,028"//"ž=1,066.10^+27"gilt"θ=10^–11,5378[°K]"//"2,9016.10^–12[°K]";Für100mHz/3Gmgilt"ž=10^28,028"//"ž=1.066.10^+28"gilt"θ=10^–12,0151[°K]"//"9,6720.10^13[°K]";
Für 30mHz/10Gmgilt"ž=10^29,028"//"ž=1,066.10^+29"gilt"θ=10^–12,5375[°K]"//"2,9016.10^–13[°K]";
Für 10mHz/30Gmgilt"ž=10^30,028"//"ž=1.066.10^+30"gilt"θ=10^–13,0148[°K]"//"9,6720.10^–14[°K]";

Für 3mHz/100Gmgilt"ž=10^31,028"//"ž=1,066.10^+31"gilt"θ=10^–13,5376[°K]"//"2,9016.10^14[°K]";
Für 1mHz/300Gmgilt"ž=10^32,028"//"ž=1.066.10^+32"gilt"θ=10^–14,014[°K]"//"9,6720.10^–15[°K]";

Für 300μHz/1Tmgilt"ž=10^33,028"//"ž=1,066.10^+33"gilt"θ=10^–14,5378[°K]"//"2,9016.10^–15[°K]";Für100μHz/3Tmgilt"ž=10^34,028"//"ž=1.066.10^+34"gilt"θ=10^–15,0151[°K]"//"9,6720.10^16[°K]";
Für 30μHz/10Tmgilt"ž=10^35,028"//"ž=1,066.10^+35"gilt"θ=10^–15,5375[°K]"//"2,9016.10^–16[°K]";
Für 10μHz/30Tmgilt"ž=10^36,028"//"ž=1.066.10^+36"gilt"θ=10^–16,0148[°K]"//"9,6720.10^–17[°K]";
Für 3μHz/100Tmgilt"ž=10^37,028"//"ž=1,066.10^+37"gilt"θ=10^–16,5376[°K]"//"2,9016.10^17[°K]";
Für 1μHz/300Tmgilt"ž=10^38,028"//"ž=1.066.10^+38"gilt"θ=10^–17,014[°K]"//"9,6720.10^–18[°K]";

Für 300nHz/1Pmgilt"ž=10^39,028"//"ž=1,066.10^+39"gilt"θ=10^–17,5378[°K]"//"2,9016.10^–18[°K]";Für100nHz/3Pmgilt"ž=10^40,028"//"ž=1.066.10^+40"gilt"θ=10^–18,0151[°K]"//"9,6720.10^19[°K]";
Für 30nHz/10Pmgilt"ž=10^41,028"//"ž=1,066.10^+41"gilt"θ=10^–18,5375[°K]"//"2,9016.10^–19[°K]";
Für 10nHz/30Pmgilt"ž=10^42,028"//"ž=1.066.10^+42"gilt"θ=10^–19,0148[°K]"//"9,6720.10^–20[°K]";
Für 3nHz/100Pmgilt"ž=10^43,028"//"ž=1,066.10^+43"gilt"θ=10^–19,5376[°K]"//"2,9016.10^20[°K]";
Für 1nHz/300Pmgilt"ž=10^44,028"//"ž=1.066.10^+44"gilt"θ=10^–20,0148[°K]"//"9,6720.10^–21[°K]";

Für 300pHz/1Emgilt"ž=10^45,028"//"ž=1,066.10^+45"gilt"θ=10^–20,5376[°K]"//"2,9016.10^–21[°K]";Für100pHz/3Emgilt"ž=10^46,028"//"ž=1.066.10^+46"gilt"θ=10^–21,0151[°K]"//"9,6720.10^–22[°K]";
Für 30pHz/10Emgilt"ž=10^47,028"//"ž=1,066.10^+47"gilt"θ=10^–21,5375[°K]"//"2,9016.10^–22[°K]";
Für 10pHz/30Emgilt"ž=10^48,028"//"ž=1.066.10^+48"gilt"θ=10^–22,0148[°K]"//"9,6720.10^–23[°K]";
Für 3pHz/100Emgilt"ž=10^49,028"//"ž=1,066.10^+49"gilt"θ=10^–22,5376[°K]"//"2,9016.10^23[°K]";
Für 1pHz/300Emgilt"ž=10^50,028"//"ž=1.066.10^+50"gilt"θ=10^–23,0148[°K]"//"9,6720.10^–24[°K]";

Für 300fHz/1Zmgilt"ž=10^51,028"//"ž=1,066.10^+51"gilt"θ=10^–23,5376[°K]"//"2,9016.10^–24[°K]";Für100fHz/3Zmgilt"ž=10^52,028"//"ž=1.066.10^+52"gilt"θ=10^–24,0151[°K]"//"9,6720.10^–25[°K]";
Für 30fHz/10Zmgilt"ž=10^53,028"//"ž=1,066.10^+53"gilt"θ=10^–24,5375[°K]"//"2,9016.10^–25[°K]";
Für 10fHz/30Zmgilt"ž=10^54,028"//"ž=1.066.10^+54"gilt"θ=10^–25,0148[°K]"//"9,6720.10^–26[°K]";
Für 3fHz/100Zmgilt"ž=10^55,028"//"ž=1,066.10^+55"gilt"θ=10^–25,5376[°K]"//"2,9016.10^26[°K]";
Für 1fHz/300Zmgilt"ž=10^56,028"//"ž=1.066.10^+56"gilt"θ=10^–26,0148[°K]"//"9,6720.10^–27[°K]";

Für 300aHz/1Ymgilt"ž=10^57,028"//"ž=1,066.10^+57"gilt"θ=10^–27,5376[°K]"//"2,9016.10^–27[°K]";Für100aHz/3Ymgilt"ž=10^58,028"//"ž=1.066.10^+58"gilt"θ=10^–28,0151[°K]"//"9,6720.10^–28[°K]";
Für 30aHz/10Ymgilt"ž=10^59,028"//"ž=1,066.10^+59"gilt"θ=10^–28,5375[°K]"//"2,9016.10^–28[°K]";
Für 10aHz/30Ymgilt"ž=10^60,028"//"ž=1.066.10^+60"gilt"θ=10^–29,0148[°K]"//"9,6720.10^–29[°K]";
Für 3aHz/100Ymgilt"ž=10^61,028"//"ž=1,066.10^+61"gilt"θ=10^–29,5376[°K]"//"2,9016.10^29[°K]";
Für 1aHz/300Ymgilt"ž=10^62,028"//"ž=1.066.10^+62"gilt"θ=10^–300148[°K]"//"9,6720.10^–30[°K]";

Für 300zHz/1Umgilt"ž=10^63,028"//"ž=1,066.10^+63"gilt"θ=10^–30,5376[°K]"//"2,9016.10^–30[°K]";Für100zHz/3Umgilt"ž=10^64,028"//"ž=1.066.10^+64"gilt"θ=10^–31,0151[°K]"//"9,6720.10^–31[°K]";

.

TabellenEnde beim NULL-Durchgang  "ž=1,066.10^+63 gilt "Te=2,9016.10^–30[°K]". Vorstehend eine Fleißarbeit „ob alles logisch aufgeht“, wenn mit der Entropie Konstante "103,4[GHz] pro 1[°K]" für die "Strukturierung" spekuliert wird.

Dazu Erklärung des Wesentlichen:
Für 10THz/30μm//"ž=1,066.10^±0""//"100[°K]";Lit.[671] i.Vortrag v.Prof.HaraldLesch für Lebens-günstige Zone
.
Die linke ZeilenKolonne (linke LeiterHolme) für die
"ž-Werte" beginnt in der Planckwelt mit dem Grenzwert "ž=0,616.10^–60",  (was ja nicht "NULL" ist!).
Die rechte ZeilenKolonne endet mit
"ž=1,066.10^+63". (was ja nicht "UNENDLICH" ist!).
Und, auf der rechten Seite (rechte LeiterHolme) beginnt die GrenzwertZeile (oben) mit der
EmissionsTemperatur "291.10^30[°K]", um bis auf die NULL-Durchgangs-Temperatur"2,9016.10^–30[°K]"(NiedrigstWert in der PlanckWelt) abfallen zu können.
Genauer erklärt: Die (nicht in der rechnerischen ZeilenKolonne enthaltene) gemäß einer ĸ-ê-Funktion „abklingende“ HubbleParameterKurve 'alt' 2017, welche unten im SCAD0482=> SCAD0524 gestrichelt-violett gezeichnet ist, muss man sich nun 2018 als darin enthaltene parametrische Funktion vorstellen."ž=1,066.10^+63".
.
Nachdem hier an dieser Textstelle der ..1nte-Seite alle Randbedingungen zueinander abgestimmt sind, kann ich an der 'vorigen' Textstelle der ..1mte-Seite viel Text der MultiEntitätenLeiter löschen.
Die angezeigten rechnerischen ž-Werte in den beiden mittleren Kolonnen sind "Ideal-Werte" auf der «Entfernungsmodul»ErsatzGeraden (45°FluchLinie beim echtHubble-Diagramm).
Der Verlauf der «HubbleParameter»Kurve (ĸ-ê-SättigungsKurve bzw. SinusKurve) weicht etwa ab den NobelpreisMesswerten von der 45°FluchLinie ab.
Dieser Verlauf der «HubbleParameter»Kurve zeigt erst die Funktionalität der kosmologischen «Entropie» auf.
__ Anmerkung1: AlbertEinstein verfolgt in seiner 1915er ART, die 'Energie' einerseits und den 'Impuls' andererseits, getrennt und schreibt in Lit.[170]S83 zum Differentialtensor (der Energie) „Seine Divergenz soll identisch verschwinden“, (damit die (Strahlungs)Energie-Erhaltung ohne Rücksicht auf den "Massendefekt" gewährleistet sei).
Anmerkung2: Der "Massendefekt" =ImpulsVerlust  entsteht erst durch die 'Verklumpung' der Masse während der Hubble'schen Expansion.

__ Anmerkung3: Einstein fühlte sich seinerzeit mal genötigt, vorsichtshalber, (für den Impulsverlust bei einer eventuellen Expansion), das 1917er λ-Glied hinzuzufügen.
Bekanntlich widerief er seine „Eselei“, als er belehrt durch AksanderFriedmann einsichtig wurde, dass bereits in seiner "ρDichte" diese gedachte EnergieZutat berücksichtigt sei.
__ Anmerkung4: Eine solche EnergieZutat, das 1999er Λ-Glied, versuchten die Experten der 'NeuenKosmologie' wieder-zu-erwecken, um die vermeintliche „beschleunigte Expansion“ erklären zu können.
__ Anmerkung5: Aber HP-41stein-bekanntlich klingt 'natürlich' infolge Impulsverlust, (das heißt gemäß dem «Entropie»Verlaufs), die «HubbleParameter»Kurve ab; und, die «Entropie»Zunahme, oder besser, die «Symtropie»Abklingung offenbart sich im "Massendefekt", sozusagen als 'Bindungs'EnergieEinsparung durch höhere Kompaktheit der Elemente bis hin zum Eisen (von beiden Seiten der Grafik her).
__ Anmerkung6: Die Systematisierung der "Massendefekt"BindungsOrdnung gehört nicht mehr hierher, sondern zu meiner URL "Entropie-Umkehr.de", empfohlen bei
"http://www.entropie-umkehr.de/25bteZusatzSeite"...

.
Weiterhin gilt für die kosmologische «Entropie» ("ž-Werte") bzw. für die komple-mentäre «Symtropie», dass der kosmologische "Massendefekt" der Elemente häufigkeitsmäßig bzw. summarischquantitativ von der „Verklumpung“ der Materie gesteuert wird. Nachstehende Grafik SCAD0541 veranschaulicht sozusagen die [SättigungsKurve der "ž-Werte"] als Abweichung der HubbleParameterKurve von der [45°EntfernungsmodulFluchtlinie].
.

"Impulsverlust" = "gebundene Wärme" in Binunfung
SCAD0541




.
Vorstenhende Grafik SCAD0541 veranschaulicht sozusagen die [SättigungsKurve der "ž-Werte" als Abweichung der HubbleParameterKurve] von der [45°Entfernungs-modulFluchtlinie].
.

Und, diese [45°EntfernungsmodulFluchtlinie] (der theoretisch gasgesetzidealen {P.V= Ŗ.T}-TemperaturEntwicklung) würde (wie bekannt) der FluchtLinie gemäß "https://rechneronline.de/spektrum/" folgen.
Oder, sie würde in erster Näherung
Tab.[321]S342bisS345 folgen; das heißt, sie würde (vielleicht) Lit.[685] "
Understanding the Cosmic Microwave Background Temperature Power Spectrum" = "https://www.roe.ac.uk/ifa/postgrad/pedagogy/2006_tojeiro.pdf" folgen.
.

Die ElementeEntwicklung infolge „Verklumpung mittels WärmeAbspeichung der BindungsEnergien“ würde (vielleicht) gemäß " http://www.physik.uni-regensburg.de/forschung/gebhardt/gebhardt_files/skripten/WS1617-ATP/Elemente.Wann.und.wo.Gebh.pdf" erfolgen.
Wie gesagt: Die Systematisierung der "Massendefekt"BindungsOrdnung gehört eigentlich nicht mehr hierher, sondern zu meiner URL "Entropie-Umkehr.de", empfohlen bei "
http://www.entropie-umkehr.de/25bteZusatzSeite"...

.
Und zu den beiden hier vorstehend-genannten Artikeln, die ja auf die Lit.[321]-Rotverschiebungs-Kosmo-Systematik abgestimmt sind, meine ich, dass "ž-Werte"-Skalierung genau umgekehrt Sinn macht:
Die heute "ž=1089-fach" rotverschobene CMB-Strahlung muss abgesendet worden sein, als sie bei der „KlarsichtWerdungs-Temperatur“ "T=3000[°K]" nur erst einen "ž-Wert=(1/1089)= 9,18.10^–4" hatte.
Da spielt für mich jenes Physik-Rätsel hinein, dass die Rapidität der Temperatur-Absenkung im Universum in den beiden Phasen
_ der a)'Strahlungs'Dominanz und
_ der b)'Materie'Dominanz
'NeueKosmologie'angeblich von der 'Skalenfaktor'Funktionalität abhängig sei.*)
*)Die dortige Grafik SCAD0557 auf der "
http://www.entropie-umkehr.de/25bteZusatzSeite" soll (laut 'NeueKosmologie' irrigerweise) aufgezeigen, dass es deutlich-unterschiedliche Geschwindigkeiten bei der Entwicklung des SkalenFaktors "S" (Größe des Universums) gegeben habe, welche WachstumsRaten sich in den unterschiedlichen Steigungen hätten offenbaren müssen.

Tatsächlich aber, muss man sich denken, dass im "ds=(1/k.T).[d(ε.V) + p.dV]" natürlicherweise die Dimensions-Beiwerte beider Summanden "d(ε.V)" und "p.dV" gleich sein müssen, um addiert werden zu können. Danach bestimmt das gemeinsame "(1/k.T)" die Steigung ExpansionsAbklingHyperbel-Ersatzgeraden*).
.
*)DezJan.2019 dochKalibrierung mit "ž=10^±60" ist bereits auf EU2ate beachtet! *)9.FebrJan.2019neuerdingsKalibrierung nur"ž=10^±31[Dekaden] ist bereits auf EU25bteZusatzSeite festgelegt!.
Hinweis: Die InflationsSteilabfallHyperbel-Ersatzgerade (am Rücken des
„Peaks-in-Gegenrichtung“) hätte vielleicht die exzessive AbfallSteigung von "(1/k.T^4)".
-----------------------------------------------------------------------------------------------

Zwischenstand am 4.Febr.2019



Klicken Sie einfach in den Text, um diesen zu bearbeiten. Überschreiben Sie den Text nach Ihren Wünschen und wählen Sie dabei Ihre individuelle Schriftart und -farbe aus.

Oder wählen Sie über "Inhalte einfügen" interessante Module aus, die Sie an die gewünschte Stelle positionieren können.

Sonderzeichen1-------------------------------
⅛⅜⅝⅞¼½¾ ⅓⅔ √∞ ▫ ^ ~ ≈‹›«» ′ ‚‛ „“ ^ ∝≙≚≗≛≅≜ ≤ ≥ ≠ ≡ ⌂ ±
 αβγδεηθικλμνξοπρςστυφχψω ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
ąàãäæăâąã@ÅĄ þÞ čĉćċ¢₡©Ↄ ₫∂ϑΔ ēėêéęĘÉĒ€℮ ᶂφɸ ĝġĜĠĞ ĥħĤĦ ὶîijį ĸœ₭ ℓ₤ жЖ Øøόõôѳọ Ω₀ ₱ № υϋύὺῠ řŗŖŘ® ŝśšϭϬ τŤţť₮ ∩ẈẄẆ žʒ
ĸ-ê {Ē\/Þ²}- (υ²=[2·Ğ·M/Ř]) "m/mѳ = 1/√[1- (υ/c)²]" ƒ(Řx) ‼Řx‼ ^•‽ ⁽⁾₍₎ †


.